Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 117
Filtrar
1.
Chem Mater ; 36(7): 3128-3137, 2024 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-38617806

RESUMO

Lacunar spinels, represented by AM4X8 compounds (A = Ga or Ge; M = V, Mo, Nb, or Ta; X = S or Se), form a unique group of ternary chalcogenide compounds. Among them, GeV4S8 has garnered significant attention due to its distinctive electrical and magnetic properties. While previous research efforts have primarily focused on studying how this material behaves under cooling conditions, pressure is another factor that determines the state and characteristics of solid matter. In this study, we employed a diamond anvil cell in conjunction with high-energy synchrotron X-ray diffraction, Raman spectroscopy, four-point probes, and theoretical computation to thoroughly investigate this material. We found that the structural transformation from cubic to orthorhombic was initiated at 34 GPa and completed at 54 GPa. Through data fitting of volume vs pressure, we determined the bulk moduli to be 105 ± 4 GPa for the cubic phase and 111 ± 12 GPa for the orthorhombic phase. Concurrently, electrical resistance measurements indicated a semiconductor-to-nonmetallic conductor transition at ∼15 GPa. Moreover, we experimentally assessed the band gaps at different pressures to validate the occurrence of the electrical phase transition. We infer that the electrical phase transition correlates with the valence electrons in the V4 cluster rather than the crystal structure transformation. Furthermore, the computational results, electronic density of states, and band structure verified the experimental observation and facilitated the understanding of the mechanism governing the electrical phase transition in GeV4S8.

2.
Front Endocrinol (Lausanne) ; 15: 1287930, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38577572

RESUMO

Objective: To evaluate the role of foot muscle amide proton transfer weighted (APTw) contrast and tissue rest perfusion in quantifying diabetic foot (DF) infection and its correlation with blood parameters. Materials and methods: With approval from an ethical review board, this study included 40 diabetes mellitus (DM) patients with DF and 31 DM patients without DF or other lower extremity arterial disease. All subjects underwent MRI, which included foot sagittal APTw and coronal arterial spin labeling (ASL) imaging. The normalized MTRasym (3.5 ppm) and the ratio of blood flow (rBF) in rest status of the affected side lesions to the non-affected contralateral side were determined. The inter-group differences of these variables were evaluated. Furthermore, the association between normalized MTRasym (3.5 ppm), rBF, and blood parameters [fasting blood glucose (FBG), glycosylated hemoglobin content, C-reactive protein, neutrophil percentage, and white blood cell count] was explored. Using an ROC curve, the diagnostic capacity of normalized MTRasym (3.5 ppm), BF, and blood biochemical markers in differentiating with or without DF in DM was assessed. Results: In the DF group, MTRasym (3.5 ppm) and BF in lesion and normalized MTRasym (3.5 ppm) were higher than those in the control group (p < 0.05). In addition, correlations were identified between normalized MTRasym (3.5 ppm) and blood parameters, such as C-reactive protein, glycosylated hemoglobin content, FBG, neutrophil ratio, and white blood cell (p < 0.001). Meanwhile, association between BF in lesion and blood parameters, such as C-reactive protein, neutrophil percentage, and FBG (p < 0.01). AUC of normalized MTRasym (3.5 ppm) in identifying with/without DF in patients with DM is 0.986 (95% CI, 0.918-1.00) with the sensitivity of 97.22% and the specificity of 100%. Conclusion: Normalized MTRasym (3.5 ppm) and the BF in lesion may be treated as a safer and more convenient new indicator to evaluate the tissue infection without using a contrast agent, which may be useful in monitoring and preoperatively assessing DF patients with renal insufficiency.


Assuntos
Diabetes Mellitus , Pé Diabético , Humanos , Prótons , Pé Diabético/diagnóstico por imagem , Amidas/química , Proteína C-Reativa , Estudos de Casos e Controles , Hemoglobinas Glicadas , Imageamento por Ressonância Magnética/métodos
3.
J Alzheimers Dis ; 98(3): 741-754, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38489182

RESUMO

Alzheimer's disease (AD) is the most common neurodegenerative disease, characterized by progressive memory loss and cognitive impairment due to excessive accumulation of extracellular amyloid-ß plaques and intracellular neurofibrillary tangles. Although decades of research efforts have been put into developing disease-modifying therapies for AD, no "curative" drug has been identified. As a central player in neuro-inflammation, microglia play a key role inbrain homeostasis by phagocytosing debris and regulating the balance between neurotoxic and neuroprotective events. Typically, the neurotoxic phenotype of activated microglia is predominant in the impaired microenvironment of AD. Accordingly, transitioning the activity state of microglia from pro-inflammatory to anti-inflammatory can restore the disrupted homeostatic microenvironment. Recently, stem cell therapy holds great promise as a treatment for AD; however, the diminished survival of transplanted stem cells has resulted in a disappointing long-term outcome for this treatment. This article reviews the functional changes of microglia through the course of AD-associated homeostatic deterioration. We summarize the possible microglia-associated therapeutic targets including TREM2, IL-3Rα, CD22, C5aR1, CX3CR1, P2X7R, CD33, Nrf2, PPAR-γ, CSF1R, and NLRP3, each of which has been discussed in detail. The goal of this review is to put forth the notion that microglia could be targeted by either small molecules or biologics to make the brain microenvironment more amenable to stem cell implantation and propose a novel treatment strategy for future stem cell interventions in AD.


Assuntos
Doença de Alzheimer , Doenças Neurodegenerativas , Humanos , Doença de Alzheimer/genética , Sobrevivência Celular , Peptídeos beta-Amiloides/uso terapêutico , Inflamação/tratamento farmacológico , Microglia
4.
Quant Imaging Med Surg ; 14(2): 1778-1790, 2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38415164

RESUMO

Background: With the continuous innovation of magnetic resonance imaging (MRI) hardware and software technology, amide proton transfer-weighted (APTw) imaging has been applied in liver cancer. However, to our knowledge, no study has evaluated the feasibility of a three-dimensional amide proton transfer-weighted (3D-APTw) imaging sequence for hepatocellular carcinoma (HCC). This study thus aimed to conduct an image quality assessment of 3D-APTw for HCC and to explore its feasibility. Methods: 3D-APTw MRI examinations were completed in 134 patients with clinically suspected HCC. According to the uniformity of APTw signal in the liver and within the lesion and the proportion of artifact and missing signal regions, APTw images were subjectively scored using a 5-point scale. The scanning success rate of liver APTw imaging was calculated as the ratio of the number of cases with a quality assurance measurement of more than 3 to the total number of HCC cases. The intra- and interobserver quality assurance measurements for APTw images were compared via the Kappa consistency test. Within the HCC cases with a minimum image quality threshold of 3 points, the APT values of HCC and the liver parenchyma, signal-to-noise ratio of APT-weighted images (SNRAPTw), and contrast-to-noise ratio of HCC (CNRHCC) were measured by two observers. The intra- and interobserver agreement was assessed using the intraclass correlation coefficient (ICC). The differences in APT values between HCC and liver parenchyma was determined using the Mann-Whitney test. Results: Sixty-six HCC cases with a quality assurance measurement of APTw imaging were included in the final analysis, and the calculated success rate was 70.21% (66/94). The subjective APT image quality scores of the two observers were consistent (3.66±1.18, 3.50±1.19, and 3.68±1.18), and no intergroup or intragroup statistical differences were found (P=0.594, and P=0.091), but the consistency of inter- and intraobserver was not as satisfactory (κ=0.594 and κ=0.580). The APT values in HCC lesion were significantly higher than those in liver parenchyma (2.73%±0.91% vs. 1.62%±0.55%; P<0.001). The APT values in HCC showed favorable intra- and interobserver consistency between the two observers (ICC =0.808 and ICC =0.853); the APT values in liver parenchyma, SNRAPTw, and CNRHCC values had moderate intraobserver consistency (ICC =0.578, ICC =0.568, and ICC =0.508) and interobserver consistency (ICC =0.599, ICC =0.199, and ICC =0.650). The coefficients of variation of the APTw values in the HCC lesion and in liver parenchyma were 33.4% and 34.4%, respectively. The SNRAPTw and CNRHCC were 30.75±18.74 and 3.56±3.19, with a coefficient of variation of 60.9% and 74.9%, respectively. Conclusions: Liver 3D-APTw imaging was preliminarily demonstrated to be clinically feasible for evaluating HCC.

5.
Sensors (Basel) ; 24(2)2024 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-38257505

RESUMO

Li-ion batteries are expected to become the mainstream devices for green energy storage or power supply in the future due to their advantages of high energy and power density and long cycle life. Monitoring the temperature and strain change characteristics of Li-ion batteries during operation is conducive to judging their safety performance. The hinged differential lever sensitization structure was used for strain sensitization in the design of an FBG sensor, which also allowed the simultaneous measurement of strain and temperature. The temperature and strain variation characteristics on the surface of a Li-ion soft-packed battery were measured using the des.igned sensor. This report found that the charging and discharging processes of Li-ion batteries are both exothermic processes, and exothermic heat release is greater when discharging than when charging. The strain on the surface of Li-ion batteries depends on electrochemical changes and thermal expansion effects during the charge and discharge processes. The charging process showed an increasing strain, and the discharging process showed a decreasing strain. Thermal expansion was found to be the primary cause of strain at high rates.

7.
Phys Chem Chem Phys ; 25(48): 32863-32867, 2023 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-38048069

RESUMO

[CH3NH3][Co(HCOO)3] is the first perovskite-like metal-organic framework exhibiting spin-driven magnetoelectric effects. However, the high-pressure tuning effects on the magnetic properties and crystal structure of [CH3NH3][Co(HCOO)3] have not been studied. In this work, alongside ac magnetic susceptibility measurements, we investigate the magnetic transition temperature evolution under high pressure. Upon increasing the pressure from atmospheric pressure to 0.5 GPa, TN (15.2 K) remains almost unchanged. Continuing to compress the sample results in TN gradually decreasing to 14.8 K at 1.5 GPa. This may be due to pressure induced changes in the bond distance and bond angle of the O-C-O superexchange pathway. In addition, by using high pressure powder X-ray diffraction and Raman spectroscopy, we conducted in-depth research on the pressure dependence of the lattice parameters and Raman modes of [CH3NH3][Co(HCOO)3]. The increase in pressure gives rise to a phase transition from the orthorhombic Pnma to a monoclinic phase at approximately 6.13 GPa. Our study indicates that high pressure can profoundly alter the crystal structure and magnetic properties of perovskite type MOF materials, which could inspire new endeavors in exploring novel phenomena in compressed metal-organic frameworks.

8.
Comput Biol Med ; 167: 107673, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37956626

RESUMO

BACKGROUND AND OBJECTIVE: Understanding the impact of inhaler resistance on particle transport and deposition in the human upper airway is essential for optimizing inhaler designs, thereby contributing to the enhancement of the therapeutic efficacy of inhaled drug delivery. This study demonstrates the potential effects of inhaler resistance on particle deposition characteristics in an anatomically realistic human oropharynx and the United States Pharmacopeia (USP) throat using computational fluid dynamics (CFD). METHOD: Magnetic resonance (MR) imaging was performed on a healthy volunteer biting on a small mockup inhaler mouthpiece. Three-dimensional geometry of the oropharynx and mouthpiece were reconstructed from the MR images. CFD simulations coupled with discrete phase modelling were conducted. Inhaled polydisperse particles under two different transient flow profiles with peak inspiratory flow rates (PIFR) of 30 L/min and 60 L/min were investigated. The effect of inhaler mouthpiece resistance was modelled as a porous medium by varying the initial resistance (Ri) and viscous resistance (Rv). Three resistance values, 0.02 kPa0.5minL-1, 0.035 kPa0.5minL-1 and 0.05 kPa0.5 minL-1, were simulated. The inhaler outlet velocity was set to be consistent across all models for both flow rate conditions to enable a meaningful comparison of models with different inhaler resistances. RESULT: The results from this study demonstrate that investigating the effect of inhaler resistance by solely relying on the USP throat model may yield misleading results. For the geometrically realistic oropharyngeal model, both the pressure and kinetic energy profiles at the mid-sagittal plane of the airway change dramatically when connected to a higher-resistance inhaler. In addition, the geometrically realistic oropharyngeal model appears to have a resistance threshold. When this threshold is surpassed, significant changes in flow dynamics become evident, which is not observed in the USP throat model. Furthermore, this study also reveals that the impact of inhaler resistance in a geometrically realistic throat model extends beyond the oral cavity and affects particle deposition downstream of the oral cavity, including the oropharynx region. CONCLUSION: Results from this study suggest that key mechanisms underpinning the working principles of inhaler resistance are intricately connected to their complex interaction with the pharynx geometry, which affects the local pressure, local variation in velocity and kinetic energy profile in the airway.


Assuntos
Inaladores de Pó Seco , Faringe , Humanos , Administração por Inalação , Aerossóis , Simulação por Computador , Hidrodinâmica , Tamanho da Partícula , Desenho de Equipamento
9.
ACS Appl Bio Mater ; 6(12): 5836-5841, 2023 Dec 18.
Artigo em Inglês | MEDLINE | ID: mdl-38018082

RESUMO

The design of self-assembling biomaterials needs to take into consideration the timing and location of the self-assembly process. In recent decades, the principal strategy has been to control the peptide self-assembly under specific conditions to enable its functional performance. However, few studies have explored the responsive elimination of functional self-assembled peptide hydrogels after their function has been performed. We designed peptide ECAFF (ECF-5), which under reductive conditions can self-assemble into a hydrogel. Upon exposure to oxidizing conditions, disulfide bonds form between the peptides, altering their molecular structure and impacting their self-assembly capability. As a result, the peptide hydrogels transition to a soluble state. This study investigates the utilization of oxidation to induce a gel-to-solution transition in peptide hydrogels and provides an explanation for their degradation following free radical treatment. Self-assembled peptide hydrogel materials can be designed from a fresh perspective by considering the degradation that takes place after functional execution.


Assuntos
Hidrogéis , Peptídeos , Hidrogéis/química , Peptídeos/química , Materiais Biocompatíveis/química , Oxirredução , Compostos de Sulfidrila , Estresse Oxidativo
10.
Comput Methods Programs Biomed ; 241: 107778, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37651818

RESUMO

BACKGROUND AND OBJECTIVE: An improved understanding of flow behaviour and particle deposition in the human nasal airway is useful for optimising drug delivery and assessing the implications of pollutants and toxin inhalation. The geometry of the human nasal cavity is inherently complex and presents challenges and manufacturing constraints in creating a geometrically realistic replica. Understanding how anatomical structures of the nasal airway affect flow will shed light on the mechanics underpinning flow regulation in the nasal pharynx and provide a means to interpret flow and particle deposition data conducted in a nasal replica or model that has reduced complexity in terms of their geometries. This study aims to elucidate the effects of sinus and reduced turbinate length on nasal flow and particle deposition efficiencies. METHODS: A complete nasal airway with maxillary sinus was first reconstructed using magnetic resonance imaging (MRI) scans obtained from a healthy human volunteer. The basic model was then modified to produce a model without the sinus, and another with reduced turbinate length. Computational fluid dynamics (CFD) was used to simulate flow in the nasal cavity using transient flow profiles with peak flow rates of 15 L/min, 35 L/min and 55 L/min. Particle deposition was investigated using discrete phase modelling (DPM). RESULTS: Results from this study show that simplifying the nasal cavity by removing the maxillary sinus and curved sections of the meatus only has a minor effect on airflow. By mapping the spatial distribution of monodisperse particles (10 µm) in the three models using a grid map that consists of 30 grids, this work highlights the specific nasal airway locations where deposition efficiencies are highest, as observed within a single grid. It also shows that lower peak flow rates result in higher deposition differences in terms of location and deposition quantity, among the models. The highest difference in particle deposition among the three nasal models is ∼10%, and this is observed at the beginning of the middle meatus and the end of the pharynx, but is only limited to the 15 L/min peak flow rate case. Further work demonstrating how the outcome may be affected by a wider range of particle sizes, less specific to the pharmaceutical industries, is warranted. CONCLUSION: A physical replica manufactured without sections of the middle meatus could still be adequate in producing useful data on the deposition efficiencies associated with an intranasal drug formulation and its delivery device.


Assuntos
Comércio , Fenômenos Fisiológicos Respiratórios , Humanos , Administração Intranasal , Sistemas Computacionais , Sistemas de Liberação de Medicamentos
12.
Ecotoxicol Environ Saf ; 263: 115221, 2023 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-37421893

RESUMO

Artificial sweeteners have sparked a heated debate worldwide due to their ambiguous impacts on public and environmental health and food safety and quality. Many studies on artificial sweeteners have been conducted; however, none scientometric studies exist in the field. This study aimed to elaborate on the knowledge creation and development of the field of artificial sweeteners and predict the frontiers of knowledge based on bibliometrics. In particular, this study combined VOSviewer, CiteSpace, and Bibliometrix to visualize the mapping of knowledge production, covered 2389 relevant scientific publications (1945-2022), and systematically analyzed articles and reviews (n = 2101). Scientific publications on artificial sweeteners have been growing at an annual rate of 6.28% and globally attracting 7979 contributors. Susan J. Brown with total publications (TP) of 17, average citation per article (AC) of 36.59, and Hirsch (h)-index of 12 and Robert F. Margolskee (TP = 12; AC = 2046; h-index = 11) were the most influential scholars. This field was clustered into four groups: eco-environment and toxicology, physicochemical mechanisms, public health and risks, and nutrition metabolism. The publications about environmental issues, in particular, "surface water," were most intensive during the last five years (2018-2022). Artificial sweeteners are gaining importance in the monitoring and assessment of environmental and public health. Results of the dual-map overlay showed that the future research frontiers tilt toward molecular biology, immunology, veterinary and animal sciences, and medicine. Findings of this study are conducive to identifying knowledge gaps and future research directions for scholars.


Assuntos
Bibliometria , Saúde Ambiental , Animais , Inocuidade dos Alimentos , Temperatura Alta , Estado Nutricional , Publicações
13.
Eur Radiol ; 33(12): 8936-8947, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37368104

RESUMO

OBJECTIVES: To evaluate the performance of a radiomics nomogram developed based on gadolinium-ethoxybenzyl-diethylenetriamine penta-acetic acid (Gd-EOB-DTPA) MRI for preoperative prediction of microvascular invasion (MVI) of hepatocellular carcinoma (HCC), and to identify patients who may benefit from the postoperative adjuvant transarterial chemoembolization (PA-TACE). METHODS: A total of 260 eligible patients were retrospectively enrolled from three hospitals (140, 65, and 55 in training, standardized external, and non-standardized external validation cohort). Radiomics features and image characteristics were extracted from Gd-EOB-DTPA MRI image before hepatectomy for each lesion. In the training cohort, a radiomics nomogram which incorporated the radiomics signature and radiological predictors was developed. The performance of the radiomics nomogram was assessed with respect to discrimination calibration, and clinical usefulness with external validation. A score (m-score) was constructed to stratify the patients and explored whether it could accurately predict patient who benefit from PA-TACE. RESULTS: A radiomics nomogram integrated with the radiomics signature, max-D(iameter) > 5.1 cm, peritumoral low intensity (PTLI), incomplete capsule, and irregular morphology had favorable discrimination in the training cohort (AUC = 0.982), the standardized external validation cohort (AUC = 0.969), and the non-standardized external validation cohort (AUC = 0.981). Decision curve analysis confirmed the clinical usefulness of the novel radiomics nomogram. The log-rank test revealed that PA-TACE significantly decreased the early recurrence in the high-risk group (p = 0.006) with no significant effect in the low-risk group (p = 0.270). CONCLUSIONS: The novel radiomics nomogram combining the radiomics signature and clinical radiological features achieved preoperative non-invasive MVI risk prediction and patient benefit assessment after PA-TACE, which may help clinicians implement more appropriate interventions. CLINICAL RELEVANCE STATEMENT: Our radiomics nomogram could represent a novel biomarker to identify patients who may benefit from the postoperative adjuvant transarterial chemoembolization, which may help clinicians to implement more appropriate interventions and perform individualized precision therapies. KEY POINTS: • The novel radiomics nomogram developed based on Gd-EOB-DTPA MRI achieved preoperative non-invasive MVI risk prediction. • An m-score based on the radiomics nomogram could stratify HCC patients and further identify individuals who may benefit from the PA-TACE. • The radiomics nomogram could help clinicians to implement more appropriate interventions and perform individualized precision therapies.


Assuntos
Carcinoma Hepatocelular , Quimioembolização Terapêutica , Neoplasias Hepáticas , Humanos , Carcinoma Hepatocelular/diagnóstico por imagem , Carcinoma Hepatocelular/terapia , Carcinoma Hepatocelular/patologia , Neoplasias Hepáticas/diagnóstico por imagem , Neoplasias Hepáticas/terapia , Neoplasias Hepáticas/irrigação sanguínea , Nomogramas , Estudos Retrospectivos
14.
Future Oncol ; 19(17): 1175-1185, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37386939

RESUMO

Aim: To assess baseline histogram parameters from apparent diffusion coefficient (ADC) images in predicting early treatment response in newly diagnosed multiple myeloma (NDMM) patients. Methods: The histogram parameters of lesions in 68 NDMM patients were obtained with the Firevoxel software. The presence of deep response after two cycles of induction was recorded. Results: Some parameters were significantly different between the two groups, for example, ADC 75% in lumbar spine (p = 0.026). No significant difference in mean ADC for any anatomic site was found (all p > 0.05). The combination of ADC 75, ADC 90 and ADC 95% in lumbar spine; ADC skewness and ADC kurtosis in rib achieved a sensitivity of 100% in predicting deep response. Conclusion: Histogram analysis of ADC images can describe NDMM heterogeneity and accurately predict treatment response.


Assuntos
Mieloma Múltiplo , Humanos , Mieloma Múltiplo/diagnóstico por imagem , Mieloma Múltiplo/terapia , Interpretação de Imagem Assistida por Computador/métodos , Imagem de Difusão por Ressonância Magnética/métodos , Imageamento por Ressonância Magnética , Software , Estudos Retrospectivos
15.
Biomimetics (Basel) ; 8(2)2023 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-37366844

RESUMO

This paper proposes a novel WOA-based robust control scheme with two kinds of propagation latencies and external disturbance implemented in Software-Defined Wireless Networks (SDWNs) to maximize overall throughput and enhance the stability of the global network. Firstly, an adjustment model developed using the Additive-Increase Multiplicative-Decrease (AIMD) adjustment scheme with propagation latency in device-to-device paths and a closed-loop congestion control model with propagation latency in device-controller pairs are proposed, and the effect of channel competition from neighboring forwarding devices is analyzed. Subsequently, a robust congestion control model with two kinds of propagation latencies and external disturbance is established. Then, a new WOA-based scheduling strategy that considers each individual whale as a specific scheduling plan to allocate appropriate sending rates at the source side is presented to maximize the global network throughput. Afterward, the sufficient conditions are derived using Lyapunov-Krasovskii functionals and formulated using Linear Matrix Inequalities (LMIs). Finally, a numerical simulation is conducted to verify the effectiveness of this proposed scheme.

16.
Front Neurosci ; 17: 1137176, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37179547

RESUMO

Objectives: To compare the signal alterations of amide proton transfer (APT), apparent diffusion coefficient (ADC), and fractional anisotropy (FA) in white matter (WM) lesions in multiple sclerosis (MS), compared with healthy controls (HCs), and to investigate the relationships between these changes and clinical measurements such as serum neurofilament light chain (sNfL). Materials and methods: Twenty-nine patients with relapsing-remitting MS (21 females and 8 males) and 30 HCs (23 females and 7 males) were recruited. APT-weighted (APTw) and diffusion tensor imaging (DTI) data were acquired using a 3.0-T magnetic resonance system. APTw and DTI images were registered to FLAIR-SPIR images and assessed by two neuroradiologists. MTRasym (3.5 ppm), ADC, FA values for MS and HC are calculated using mean values from all regions of interest (ROI). The ROI criteria were: (1) for MS patients, ROI were defined as MS lesions, and each lesion was identified. (2) The WM around each HC's lateral ventricle (frontal lobe, parietal lobe, and centrum semiovale) was assessed bilaterally. The diagnostic efficacy of MTRasym (3.5 ppm), ADC, and FA in the lesions of MS patients was compared using receiver operating characteristic (ROC) curve analysis. The associations between MTRasym (3.5 ppm), ADC, and FA values and the clinical measurements were investigated further. Results: The MTRasym (3.5 ppm) and ADC values of brain lesions were increased, while FA values were decreased in patients with MS. The diagnostic area under curve (AUC) of MTRasym (3.5 ppm), ADC, and FA value was 0.891 (95% CI: 0.813, 0.970), 0.761 (95% CI: 0.647, 0.875) and 0.970 (95% CI: 0.924, 1.0), respectively. sNfL was considerably positively correlated with MTRasym (3.5 ppm) (P = 0.043, R = 0.38) and disease durations were significantly negatively correlated with FA (P = 0.046, R = -0.37). Conclusion: Amide proton transfer-weighted (APTw) and DTI are potential imaging methods for assessing brain lesions in patients with MS at the molecular and microscopic levels, respectively. The association between APTw, DTI parameters and clinical factors implies that they may play a role in disease damage monitoring.

17.
Pharmaceutics ; 15(5)2023 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-37242799

RESUMO

With the growing demand for the development of intranasal (IN) products, such as nasal vaccines, which has been especially highlighted during the COVID-19 pandemic, the lack of novel technologies to accurately test the safety and effectiveness of IN products in vitro so that they can be delivered promptly to the market is critically acknowledged. There have been attempts to manufacture anatomically relevant 3D replicas of the human nasal cavity for in vitro IN drug tests, and a couple of organ-on-chip (OoC) models, which mimic some key features of the nasal mucosa, have been proposed. However, these models are still in their infancy, and have not completely recapitulated the critical characteristics of the human nasal mucosa, including its biological interactions with other organs, to provide a reliable platform for preclinical IN drug tests. While the promising potential of OoCs for drug testing and development is being extensively investigated in recent research, the applicability of this technology for IN drug tests has barely been explored. This review aims to highlight the importance of using OoC models for in vitro IN drug tests and their potential applications in IN drug development by covering the background information on the wide usage of IN drugs and their common side effects where some classical examples of each area are pointed out. Specifically, this review focuses on the major challenges of developing advanced OoC technology and discusses the need to mimic the physiological and anatomical features of the nasal cavity and nasal mucosa, the performance of relevant drug safety assays, as well as the fabrication and operational aspects, with the ultimate goal to highlight the much-needed consensus, to converge the effort of the research community in this area of work.

18.
Magn Reson Imaging ; 102: 43-48, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37054801

RESUMO

PURPOSE: To assess the value of amide proton transfer weighted (APTw) combined with intra-voxel incoherent motion (IVIM) imaging in differential diagnosis of stage I-II endometrial carcinoma (EC) and endometrial polyp (EP). METHODS: A total of 53 female patients (37 cases with EC and 16 cases with EP) confirmed by surgical resection or biopsy from June 2019 to Jan. 2022 were retrospectively reviewed. All patients underwent 3.0 T magnetic resonance imaging (MRI) examination including diffusion weighted imaging (DWI), APTw and IVIM scans. The pure diffusion coefficient (D), pseudo-diffusion coefficient (D⁎), perfusion fraction (f), apparent diffusion coefficient (ADC) and APT values were independently measured by two observers. Intra-class correlation coefficients (ICC) were used to test the consistency of measurements by the two observers. Mann-Whitney U test was performed to analyze the difference of each parameter between EC and EP groups. Receiver operator characteristic (ROC) analysis was performed, and the Delong test was used for ROC curve comparison. Pearson's correlation analysis was used to assess the correlation between APTw and IVIM parameters. RESULTS: There was no significant difference in clinical manifestations between the two groups (P > 0.05). APT and D⁎ values of the EC group were significantly higher than those of the EP group [APT: 2.64 ± 0.50% vs. 2.05 ± 0.58%; and D⁎: (54.06 ± 36.06) × 10-3 mm2/s vs. (30.54 ± 16.67) × 10-3 mm2/s]. D, f and ADC values of EC group were significantly lower than those of EP group [D: 0.62(0.53,0.76) × 10-3 mm2/s vs. (1.45 ± 0.48) × 10-3 mm2/s; f: 22.18 ± 8.08% vs. 30.80 ± 8.92%; and ADC: (0.88 ± 0.16) × 10-3 mm2/s vs. (1.57 ± 0.43) × 10-3 mm2/s]. The area under ROC curves were observed as: AUC (IVIM+APT) > AUC (D) > AUC (ADC) > AUC (APT) > AUC (f) > AUC (D⁎). Delong test suggested statistical significance between AUC by APT and D, D and D⁎, D and f, D⁎ and ADC, APT and com(IVIM+APT), D⁎ and com(IVIM+APT), as well as f and com(IVIM+APT). No significant correlation between the APT and IVIM parameters was observed in either EC or EP group. CONCLUSION: Both APT and IVIM parameters showed statistical differences between EC and EP. With combination of APT and IVIM parameters, the diagnostic accuracy between EC and EP can be significantly improved.


Assuntos
Neoplasias do Endométrio , Prótons , Humanos , Feminino , Estudos Retrospectivos , Amidas , Imageamento por Ressonância Magnética , Imagem de Difusão por Ressonância Magnética/métodos , Neoplasias do Endométrio/diagnóstico por imagem , Movimento (Física)
19.
Eur Radiol ; 33(5): 3178-3187, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36892646

RESUMO

OBJECTIVES: To explore the different involvement patterns of the knee "synovio-entheseal complex (SEC)" on MRI in patients with spondyloarthritis (SPA), rheumatoid arthritis (RA), and osteoarthritis (OA). METHODS: This study retrospectively included 120 patients (male:female, 55:65) with a mean age of 39.20 years diagnosed with SPA (n = 40), RA (n = 40), and OA (n = 40) at the First Central Hospital of Tianjin between January 2020 and May 2022. Six knee entheses were assessed by two musculoskeletal radiologists according to the SEC definition. Bone marrow lesions associated with entheses include bone marrow edema (BME) and bone erosion (BE), which were classified as entheseal or peri-entheseal based on their relationship to the entheses. Three groups (OA, RA, and SPA) were established to characterize the location of enthesitis and the different SEC involvement patterns. Inter-group and intra-group differences were analyzed using the ANOVA or chi-square tests, and the inter-class correlation coefficient (ICC) test was used to determine inter-reader agreement. RESULTS: The study contained a total of 720 entheses. The SEC-based analysis revealed different involvement patterns in three groups. The OA group had the most abnormal signals in tendons/ligaments (p = 0.002). The RA group had considerably greater synovitis (p = 0.002). The majority of peri-entheseal BE was identified in the OA and RA groups (p = 0.003). Furthermore, entheseal BME in the SPA group was significantly different from those in the other two groups (p < 0.001). CONCLUSIONS: SEC involvement patterns differed in SPA, RA, and OA, which is important for differential diagnosis. SEC should be used as a whole evaluation method in clinical practice. KEY POINTS: • The "synovio-entheseal complex (SEC)" explained differences and characteristic alterations in the knee joint in patients with spondyloarthritis (SPA), rheumatoid arthritis (RA), and osteoarthritis (OA). • The various SEC involvement patterns are crucial for differentiating SPA, RA, and OA. • When "knee pain" is the only symptom, a detailed identification of characteristic alterations in the knee joint of SPA patients may help timely treatment and delay the structural damage.


Assuntos
Artrite Reumatoide , Doenças da Medula Óssea , Osteoartrite , Espondilartrite , Humanos , Masculino , Feminino , Adulto , Diagnóstico Diferencial , Estudos Retrospectivos , Artrite Reumatoide/diagnóstico por imagem , Artrite Reumatoide/complicações , Articulação do Joelho/patologia , Espondilartrite/complicações , Imageamento por Ressonância Magnética/métodos , Doenças da Medula Óssea/patologia
20.
Chemosphere ; 320: 138110, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36773678

RESUMO

Per-fluoroalkyl substances (PFASs) have been widely detected in farmland soils and are understood to pose toxicological threats to soil microbiomes and crop safety. Meanwhile, farmland ecosystems have experienced increasing nitrogen loading caused by soil fertilization. Yet it is still unclear how nitrogen additions affect soil's microbial responses to PFASs. In this study, using a laboratory-based ecological experiment, we assessed the microbial availability of PFASs in soils receiving ammonium, nitrate, and urea nitrogen amendments by quantifying the translocation factors of PFASs from soil particle to soil extracellular polymeric substances (EPS). Our results showed that nitrogen, specifically ammonium, significantly increased the PFASs' microbial availability (p < 0.05). Second, nitrogen fertilization in PFASs-polluted soils decreased the microbial community diversity and stability at the structural, species, and functional levels (p < 0.05). For soil microbial activities, nitrogen enhanced the activity of superoxide dismutase (SOD) while it inhibited the catalase (CAT) and peroxidase (POD) (p < 0.01). Congruently, PFASs, as well as the nitrate and nitrite nitrogen, were shown to be the predominant abiotic drivers regulating the soil fungal succession (p < 0.05), while bacteria were mostly regulated by dissolved organic carbon (DOC) (p < 0.01). Furthermore, we revealed that the nitrogen cycling gene hmp (dominates the transformation from NO to NO3-) was the hub gene integrating the microbially available PFASs and the soil nitrogen cycling processes (p < 0.01), indicating that hmp could be the core regulator affecting the accumulation of PFASs in soil EPS. Our study highlighted that decreasing ammonia's amendments could mitigate China's national initiatives to reduce nitrogen fertilization in farmlands, reduce the PFASs' availability to the soil microbiome, and protect the microbial community stability in soil.


Assuntos
Compostos de Amônio , Fluorocarbonos , Ecossistema , Solo/química , Triticum , Nitratos , Nitrogênio/análise , Microbiologia do Solo , Carbono/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...